Answer:
A.
Explanation:
The β-sheet is a twisted pattern in which the protein strands are laterally linked through hydrogen bonds. These β-sheet motifs are segments of 3 to 10 amino acids that are specially configured to form beta antiparallel strands. In β-sheet regions, the hydrogen bonds are localized among carbonyl and amino groups of the polypeptide backbone, and side chains (i.e., the R groups) are extended up and down in the plane of the β-sheet.
Answer: 2,1,1
Explanation: (2)Na2HPO4=(1)Na4P2O7+(1)H20
E since its a physical model i.e. you can touch and feel the model :)
1.39 g HCl
Explanation:
The balanced chemical equation for this reaction is given by
Zn(<em>s</em>) + 2HCl(<em>aq</em>) ---> ZnCl2(<em>aq</em>) + H2(<em>g</em>)
Convert the # of grams of Zn to moles:
1.25 g Zn × (1 mol Zn/65.38 g Zn) = 0.0191 mol Zn
Use the molar ratio to find the # of moles of HCl needed to react completely with the given amount of Zn:
0.0191 mol Zn × (2 mol HCl/1 mol Zn) = 0.0382 mol HCl
Convert this amount to grams:
0.0382 mol HCl × (36.458 g HCl/1 mol HCl) = 1.39 g HCl
Answer:
The balanced equations for those dissociations are:
Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻ (aq)
H₂SO₄ (aq) → 2H⁺(aq) + SO₄⁻²(aq)
Explanation:
As a strong base, the barium hidroxide gives OH⁻ to the solution
As a strong acid, the sulfuric acid gives H⁺ to the solution
Ba(OH)₂, is a strong base so the dissociation is complete.
H₂SO₄ is considerd a strong acid, but only the first deprotonation is strong.
The second proton that is released, has a weak dissociation.
H₂SO₄ (aq) → H⁺(aq) + HSO₄⁻(aq)
HSO₄⁻(aq) ⇄ H⁺ (aq) + SO₄⁻² (aq) Ka