Answer
Find out the original side length of the square .
To prove
Let us assume that the original length of the square be x.
Formula

As given
The dimensions of a square are altered so that 8 inches is added to one side while 3 inches is subtracted from the other.
Length becomes = x + 8
Breadth becomes = x -3
The area of the resulting rectangle is 126 in²
Put in the formula
(x + 8) × (x - 3) = 126
x² -3x + 8x -24 = 126
x ²+ 5x = 126 +24
x² + 5x - 150 = 0
x² + 15x - 10x - 150 = 0
x (x + 15) -10 (x +15) =0
(x + 15)(x -10) =0
Thus
x = -15 , 10
As x = -15 (Neglected this value because the side of the square cannot be negative.)
Therefore x = 10 inches be the original side of the square.
Answer:
y=-2x+9
Step-by-step explanation:
Assuming there are no breaks, there are 52 weeks in a year so 475(52)= 24700
Answer:
Minimum 66 feet of molding that he needs.
Step-by-step explanation:
Given that a square ceiling has a diagonal of 23 ft.
If the sides of the square ceiling are 'a' feet, then applying Pythagoras Theorem we can write, a² + a² = 23²
⇒ 2a² = 23²
⇒ a = 16.2634 feet (Approximate)
Now, the perimeter of the square ceiling will be 4a = 65.05 feet.
If the cost of molding along the perimeter of the ceiling is in per foot, then a minimum of 66 feet of molding that he needs. (Answer)