Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°
Answer:
a) 
b) 
c) 
d) 
e) 
Explanation:
At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.
(1)
Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.
Let's solve (1) for β.

We can write the mass of a proton in MeV/c².

Now we can calculate the speed in each stage.
a) Cockcroft-Walton (750 keV)



b) Linac (400 MeV)



c) Booster (8 GeV)



d) Main ring or injector (150 Gev)



e) Tevatron (1 TeV)



Have a nice day!
The amount of work done by two boys who apply 200 N of force in an unsuccessful attempt to move a stalled car is 0.
Answer: Option B
<u>Explanation:
</u>
Work done is the measure of work done by someone to push an object from its present position. We can also define work done as the amount of forces needed to move an object from its present position to another position. So the amount of work done is directly proportionate to the product of forces acting on the object and the displacement of the object.

So in this present case, as the two boys have done an unsuccessful attempts to push a stalled car so that means the displacement of the car is zero as there is no change in the position of the car. But they have applied a force of 200 N each. So the amount of work done will be

Thus, the amount of work done by two boys will be zero due to their unsuccessful attempt to move a stalled car.
One of the essential concepts to solve this problem is the utilization of the equations of centripetal and gravitational force.
From them it will be possible to find the speed of the body with which the estimated time can be calculated through the kinematic equations of motion. At the same time for the calculation of this speed it is necessary to clarify that this will remain twice the ship, because as we know by relativity, when moving in the same magnitude but in the opposite direction, with respect to the ship the debris will be double speed.
By equilibrium the centrifugal force and the gravitational force are equal therefore


Where
m = mass spacecraft
v = velocity
G = Gravitational Universal Constant
M = Mass of earth
Radius of earth and orbit
Re-arrange to find the velocity





Replacing with our values we have


From the cinematic equations of motion we have to
Remember that the speed is double for the counter-direction of the trajectories.
Replacing


Therefore the time required is 3.778s
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2