Answer:
here
Step-by-step explanation:
93 is 60 percent from the original price.
The discount reduces the original price by 40 percent.
The correct question is
<span>
Penelope determined the solutions of the quadratic function by completing the square.f(x) = 4x² + 8x + 1
–1 = 4x² + 8x
–1 = 4(x² + 2x)
–1 + 1 = 4(x² + 2x + 1)
0 = 4(x + 2)²
0 = (x + 2)²
0 = x + 2
–2 = x
What error did Penelope make in her work?
we have that
</span>f(x) = 4x² + 8x + 1
to find the solutions of the quadratic function
let
f(x)=0
4x² + 8x + 1=0
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
(4x² + 8x)=-1
Factor the
leading coefficient
4*(x² + 2x)=-1
Complete the square Remember to balance the equation
by adding the same constants to each side.
4*(x² + 2x+1)=-1+4 --------> ( added 4 to both sides)
Rewrite as perfect squares
4*(x+1)²=3
(x+1)²=3/4--------> (+/-)[x+1]=√3/2
(+)[x+1]=√3/2---> x1=(√3/2)-1----> x1=(√3-2)/2
(-)[x+1]=√3/2----> x2=(-2-√3)/2
therefore
the answer is
<span>
Penelope should have added 4 to both sides instead of adding 1.</span>
<u>We are given the equation:</u>
(a + b)! = a! + b!
<u>Testing the given equation</u>
In order to test it, we will let: a = 2 and b = 3
So, we can rewrite the equation as:
(2+3)! = 2! + 3!
5! = 2! + 3!
<em>We know that (5! = 120) , (2! = 2) and (3! = 6):</em>
120 = 2 + 6
We can see that LHS ≠ RHS,
So, we can say that the given equation is incorrect