<u>Answer :</u>
(a) d = 0.25 m
(b) d = 0.5 m
<u>Explanation :</u>
It is given that,
Frequency of sound waves, f = 686 Hz
Speed of sound wave at
is, v = 343 m/s
(1) Perfectly destructive interference occurs when the path difference is half integral multiple of wavelength i.e.
........(1)
Velocity of sound wave is given by :




Hence, when the speakers are in phase the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive is 0.25 m.
(2) For constructive interference, the path difference is integral multiple of wavelengths i.e.
( n = integers )
Let n = 1
So, 


Hence, the smallest distance between the speakers for which the interference of the sound waves is maximum constructive is 0.5 m.
Answer:
Explanation:
The work required to push will be equal to work done by friction . Let d be the displacement required .
force of friction = mg x μ where m is mass of the suitcase , μ be the coefficient of friction
work done by force of friction
mg x μ x d = 660
80 x 9.8 x .272 x d = 660
d = 3 .1 m .
Answer:
(A) more rapidly than
Explanation:
With higher temperatures, object's molecules (and atoms) have higher kinetic energy which is due to faster "jiggling" (vibrations). On a hot day these vibrations in the material the sidewalk is made of are more rapid than on a cold day, just as their temperatures differ.
It’s C
Cause Impulse is found by multiplying the force and change in time (which is simply time)
So if you rearrange the equation for time you end up dividing Impulse by force.
Answer: I don't know how to do this
Explanation: sorry I am not sure.