1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
4 years ago
7

If the energy carried by a wave increases, which other wave property also increases?

Physics
1 answer:
damaskus [11]4 years ago
5 0

Answer:

The answer is wavelength

You might be interested in
If two objects with static charge are attracted what do you know about them?
klemol [59]
They carry opposite charge ( one has negative charge and one has positive charge)
4 0
4 years ago
Two loudspeakers are placed on a wall 2 m apart. A listener stands directly in front of one of the speakers, 81.7 m from the wal
OverLord2011 [107]

Answer:

The phase difference is       \Delta \phi = 1.9995 rad  

Explanation:

From the question we are told that

    The distance between the  loudspeakers is d = 2m

     The distance of the listener from the wall  D = 81.7 \ m

     The frequency of the  loudspeakers is  f = 4450Hz

      The velocity of sound is v_s = 343 m/s

     

The path difference of the sound wave that is getting to the listener is mathematically represented as

        \Delta z  =\sqrt{d^2 + D^2} -D

Substituting values

        \Delta z  =\sqrt{2^2 + 81.7^2 } -81.7

       \Delta z  =0.0245m

The phase difference is mathematically represented as

           \Delta \phi =  \frac{2 \pi}{\lambda } *  \Delta z

Where \lambda is the wavelength which is mathematically represented as

          \lambda  = \frac{v_s }{f}

substituting value  

          \lambda  = \frac{343 }{4450}

        \lambda  = 0.0770 m

Substituting value into the  equation for phase difference

      \Delta \phi =  \frac{2 * 3.142 * 0.0245}{0.0770}

      \Delta \phi = 1.9995 rad  

8 0
3 years ago
A 675 kg car moving at 15.7 m/s hits from behind another car moving at 9.6 m/s in the same direction. If the second car has a ma
Maslowich

Answer:

?!?!?!?!?!?!

Explanation:

?!?!?!?!?!?!?

3 0
3 years ago
Two or more atoms can be held together through shared
Andre45 [30]

They can share electrons. By sharing, they form a covalent Bond and that way atoms can be stable.

4 0
3 years ago
Suppose a rocket ship accelerates upwards with acceleration equal in magnitude to twice the magnitude of g (we say that the rock
pashok25 [27]

Answer:

a) s_a=98100\ m is the height where the rocket stops accelerating and its fuel is finished and starts decelerating while it still continues to move in the upward direction.

b) v_a=1962\ m.s^{-1} is speed of the rocket going when it stops accelerating.

c) H=294300\ m

d) t_T=544.95\ s

e) Zero, since the average velocity is the net displacement per unit time and when the rocket strikes back the earth surface the net displacement is zero.

Explanation:

Given:

acceleration of rocket, a=2g=2\times 9.81=19.62\ m.s^{-2}

time for which the rocket accelerates, t_a=100\ s

<u>For the course of upward acceleration:</u>

using eq. of motion,

s_a=ut+\frac{1}{2}at_a^2

where:

u= initial velocity of the rocket at the launch =0

s_a= height the rocket travels just before its fuel finishes off

so,

s_a=0+\frac{1}{2}\times 19.62\times 100^2

a) s_a=98100\ m is the height where the rocket stops accelerating and its fuel is finished and starts decelerating while it still continues to move in the upward direction.

<u>Now the velocity of the rocket just after the fuel is finished:</u>

v_a=u+at_a

v_a=0+19.62\times 100

b) v_a=1962\ m.s^{-1} is speed of the rocket going when it stops accelerating.

After the fuel is finished the rocket starts to decelerates. So, we find the height of the rocket before it begins to fall back towards the earth.

Now the additional height the rocket ascends before it begins to fall back on the earth after the fuel is consumed completely, at this point its instantaneous velocity is zero:

using equation of motion,

v^2=v_a^2-2gh

where:

g= acceleration due to gravity

v= final velocity of the rocket at the top height

0^2=1962^2-2\times 9.81\times h

h=196200\ m

c) So the total height at which the rocket gets:

H=h+s

H=196200+98100

H=294300\ m

d)

Time taken by the rocket to reach the top height after the fuel is over:

v=v_a+g.t

0=1962-9.81t

t=200\ s

Now the time taken to fall from the total height:

H=v.t'+\frac{1}{2}\times gt'^2

294300=0+0.5\times 9.81\times t'^2

t'=244.95\ s

Hence the total time taken by the rocket to strike back on the earth:

t_T=t_a+t+t'

t_T=100+200+244.95

t_T=544.95\ s

e)

Zero, since the average velocity is the net displacement per unit time and when the rocket strikes back the earth surface the net displacement is zero.

8 0
3 years ago
Other questions:
  • How many grams of nickel metal are plated out when a constant current of 15.0 Ais passed through aqueous NICl2 for 80.0 minutes?
    10·1 answer
  • Which electromagnetic waves have the highest energy?
    8·1 answer
  • What does classify mean
    14·2 answers
  • If you have charged an electroscope by contact with a positively charged object, describe how you could use it to determine the
    13·1 answer
  • A car travelling on a straight road initially at 45 km/h accelerates for 5.0 s at a constant acceleration of 8.0 m/s2. What is t
    14·1 answer
  • Need help with 6 , 7 , and 8.
    10·1 answer
  • A plane is traveling North at 80km/hr into a 20 km/hr headwind (South). What is the plane's resultant velocity?
    12·2 answers
  • 2. A man in a hot air balloon drops his “five guy's hamburger” over the edge of the basket. The
    14·1 answer
  • The weight of an object is the force pulling the object:
    13·1 answer
  • What is the average velocity if the initial velocity of an object is 19 mph and the final velocity of 75 mph ?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!