Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:

Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v = 
v = 
v = 
v = 
Now,
The angular velocity can be calculated as:

Thus

An analog signal carries information by copying an original sound
When we speak through the microphone, it turns our sound into some sort of electronic wave.
This electronic wave is caught by a recording device and later could be replicated into Mp3 file that we usually listen to
Answer:
fjowe
Explanation:
kbegtrf3g4ef j3kq4ef 3w4beysrf2w4er8f6ywgbaebf7v2wy4egdwa4i6e5
Answer:
d = (75 i ^ + 93 j ^ + 27 k ^) m
, d2 = (900 i ^ + 1116 j ^ + 324 k ^) m
Explanation:
The two objects are in circular orbit together, therefore with the same angular velocity, after the launch they move with the relative velocity, so we can use the kinematic relation
v = d / t
d = v t
Reduce time to units SI
t = 5 min (60 s / 1 min) = 300 s
X axis
x = vₓ t
x = 0.25 300
x = 75 m
Y axis
y =
t
y = 0.31 300
y = 93 m
Z axis
z=
t
z = 0.09 300
z = 27 m
d = (75 i ^ + 93 j ^ + 27 k ^) m
For the time of 1 h
t2 = 1 h (3600s / 1 h) = 3600
x2 = 900 m
y2 = 1116 m
z2 = 324 m
d2 = (900 i ^ + 1116 j ^ + 324 k ^) m