Answer:
The mass is 16 [g]
Explanation:
We have to remember the formula that defines density, which mentions that the density is equal to mass divided by the volume.
![Density = mass / volume\\where:\\density = 2[\frac{g}{cm^{3} } ]\\Volume = 8 [cm^{3}]](https://tex.z-dn.net/?f=Density%20%3D%20mass%20%2F%20volume%5C%5Cwhere%3A%5C%5Cdensity%20%3D%202%5B%5Cfrac%7Bg%7D%7Bcm%5E%7B3%7D%20%7D%20%5D%5C%5CVolume%20%3D%208%20%5Bcm%5E%7B3%7D%5D)
Now we clear the mass:
![mass= density*volume\\mass = 2[\frac{g}{cm^{3} }]*8[cm^{3} ]\\mass = 16 [g]](https://tex.z-dn.net/?f=mass%3D%20density%2Avolume%5C%5Cmass%20%3D%202%5B%5Cfrac%7Bg%7D%7Bcm%5E%7B3%7D%20%7D%5D%2A8%5Bcm%5E%7B3%7D%20%5D%5C%5Cmass%20%3D%2016%20%5Bg%5D)
Answer:
Specific heat of water is 4.186 J/g/C. The heat required to raise the temperature by
is
Here is mass of water being heated, specific heat of water and change in temperature.
Here .
Heat energy required is
Explanation:
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
Answer:
Explanation:
extension in the spring = 40.4 - 31.8 = 8.6 cm = 8.6 x 10⁻² m .
kx = mg
k is spring constant , x is extension , m is mass
k x 8.6 x 10⁻² = 7.52 x 9.8
k = 856.93 N/m
= 857 x 10⁻³ KN /m
b ) Both side is pulled by force of 188 N .
Tension in spring = 188N
kx = T
856.93 x = 188
x = .219.38 m
= 21.938 cm
= 21.9 cm .
length of spring = 31.8 + 21.9
= 53.7 cm .
Explanation:
The eardrum vibrates from the incoming sound waves and sends these vibrations to three tiny bones in the middle ear. These bones are called the malleus, incus, and stapes.