Answer:
7 : 17.29
Step-by-step explanation:
==>Given:
Two similar cylinders:
Surface area of Cylinder A = 49cm²
Surface area of Cylinder B = 121cm²
==>Required:
Scale factor between both cylinders
==>Solution:
We can easily get the scale factor between both by taking the following steps:
=>Set up a ratio of their surface area:
Smaller cone surface area : larger cone surface area
49:121
= 49/121
=>Simplify the ratio gotten:
Dividing the denominator and the numerator by 7, would give us,
7/17.29
= 7:17.29
Thank you sm! Happy December 1st! Mark b please?
Part A;
There are many system of inequalities that can be created such that only contain points C and F in the overlapping shaded regions.
Any system of inequalities which is satisfied by (2, 2) and (3, 4) but is not stisfied by <span>(-3, -4), (-4, 3), (1, -2) and (5, -4) can serve.
An example of such system of equation is
x > 0
y > 0
The system of equation above represent all the points in the first quadrant of the coordinate system.
The area above the x-axis and to the right of the y-axis is shaded.
Part 2:
It can be verified that points C and F are solutions to the system of inequalities above by substituting the coordinates of points C and F into the system of equations and see whether they are true.
Substituting C(2, 2) into the system we have:
2 > 0
2 > 0
as can be seen the two inequalities above are true, hence point C is a solution to the set of inequalities.
Part C:
Given that </span><span>Natalie
can only attend a school in her designated zone and that Natalie's zone is
defined by y < −2x + 2.
To identify the schools that
Natalie is allowed to attend, we substitute the coordinates of the points A to F into the inequality defining Natalie's zone.
For point A(-3, -4): -4 < -2(-3) + 2; -4 < 6 + 2; -4 < 8 which is true
For point B(-4, 3): 3 < -2(-4) + 2; 3 < 8 + 2; 3 < 10 which is true
For point C(2, 2): 2 < -2(2) + 2; 2 < -4 + 2; 2 < -2 which is false
For point D(1, -2): -2 < -2(1) + 2; -2 < -2 + 2; -2 < 0 which is true
For point E(5, -4): -4 < -2(5) + 2; -4 < -10 + 2; -4 < -8 which is false
For point F(3, 4): 4 < -2(3) + 2; 4 < -6 + 2; 4 < -4 which is false
Therefore, the schools that Natalie is allowed to attend are the schools at point A, B and D.
</span>
Answer:
785 almonds
Step-by-step explanation:
157 x 5 = 785
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.