1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
2 years ago
8

Can you use the ASA postulate or the AAS theorem to prove the triangles congruent?

Mathematics
2 answers:
Molodets [167]2 years ago
8 0

Answer:

(C) by ASA only

Step-by-step explanation:

Let us name the given figure, there are two triangles that areΔABO and ΔCOD.

Thus, from ΔABO and ΔCOD, we have

∠ABO=∠DCO(Given in the question)

BO=DO( given in question)

∠AOB=∠COD(Vertically opposite angles)

Therefore, by ASA rule,

ΔABO ≅ΔCOD

Therefore, only ASA rule can be applied on the given figure.

Hence, option C is correct.

Naya [18.7K]2 years ago
3 0
Angle side angle theorem i believe?
angle (the one with the arc), the tick (side), then the angle (the vertical angle). 
You might be interested in
Is relation to t a function? is the inverse of relation t a function?
Alona [7]

The relation t is one-to-one, so it is a function and so is its inverse


3 0
2 years ago
The reflection of point S across the y-axis is point
Ostrovityanka [42]
Point V
Also point V
(-5,-5.5)
3 0
3 years ago
Find the area of a parallelogram with base (b) and height (h)
anyanavicka [17]
Answer is C) 1,095.2 cm2
Formula for area for parallelogram is = b.h
7 0
3 years ago
Solve irrational equation pls
rusak2 [61]
\hbox{Domain:}\\
x^2+x-2\geq0 \wedge x^2-4x+3\geq0 \wedge x^2-1\geq0\\
x^2-x+2x-2\geq0 \wedge x^2-x-3x+3\geq0 \wedge x^2\geq1\\
x(x-1)+2(x-1)\geq 0 \wedge x(x-1)-3(x-1)\geq0 \wedge (x\geq 1 \vee x\leq-1)\\
(x+2)(x-1)\geq0 \wedge (x-3)(x-1)\geq0\wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\
x\in(-\infty,-2\rangle\cup\langle1,\infty) \wedge x\in(-\infty,1\rangle \cup\langle3,\infty) \wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\
x\in(-\infty,-2\rangle\cup\langle3,\infty)



\sqrt{x^2+x-2}+\sqrt{x^2-4x+3}=\sqrt{x^2-1}\\
x^2-1=x^2+x-2+2\sqrt{(x^2+x-2)(x^2-4x+3)}+x^2-4x+3\\
2\sqrt{(x^2+x-2)(x^2-4x+3)}=-x^2+3x-2\\
\sqrt{(x^2+x-2)(x^2-4x+3)}=\dfrac{-x^2+3x-2}{2}\\
(x^2+x-2)(x^2-4x+3)=\left(\dfrac{-x^2+3x-2}{2}\right)^2\\
(x+2)(x-1)(x-3)(x-1)=\left(\dfrac{-x^2+x+2x-2}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\left(\dfrac{-x(x-1)+2(x-1)}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\left(\dfrac{-(x-2)(x-1)}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\dfrac{(x-2)^2(x-1)^2}{4}\\
4(x+2)(x-3)(x-1)^2=(x-2)^2(x-1)^2\\

4(x+2)(x-3)(x-1)^2-(x-2)^2(x-1)^2=0\\
(x-1)^2(4(x+2)(x-3)-(x-2)^2)=0\\
(x-1)^2(4(x^2-3x+2x-6)-(x^2-4x+4))=0\\
(x-1)^2(4x^2-4x-24-x^2+4x-4)=0\\
(x-1)^2(3x^2-28)=0\\
x-1=0 \vee 3x^2-28=0\\
x=1 \vee 3x^2=28\\
x=1 \vee x^2=\dfrac{28}{3}\\
x=1 \vee x=\sqrt{\dfrac{28}{3}} \vee x=-\sqrt{\dfrac{28}{3}}\\

There's one more condition I forgot about
-(x-2)(x-1)\geq0\\
x\in\langle1,2\rangle\\

Finally
x\in(-\infty,-2\rangle\cup\langle3,\infty) \wedge x\in\langle1,2\rangle \wedge x=\{1,\sqrt{\dfrac{28}{3}}, -\sqrt{\dfrac{28}{3}}\}\\
\boxed{\boxed{x=1}}
3 0
2 years ago
3x- 5=1 what does x represent
V125BC [204]

Answer:

x=2

Step-by-step explanation:

3x=5+1

3x=6

x=6/3

x=2

8 0
2 years ago
Read 2 more answers
Other questions:
  • Create an expression equivalent to 3(4x -2) -5x + 10 using the least number of terms.
    13·1 answer
  • A printer measuring 25" x
    12·1 answer
  • 7 yd 2 feet = blank ft
    10·2 answers
  • PLEASE HELP precal!
    8·1 answer
  • Khan academy midpoint formula question!! Please help
    10·2 answers
  • Please answer asap with explanation ​
    15·1 answer
  • A bus touring company charges $10 per passenger, and carries an average of 300 passengers per day. The company estimates it will
    8·1 answer
  • PLEASE HELP 30 POINTS TO WHOEVER HELPS I NEED IT QUICK PLEASE HELP
    14·2 answers
  • Help plz I’ll mark brainliest
    7·1 answer
  • PLEASE PLEASE PLEASE PLEASE HELP MEEEE PLEASE I BEG
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!