Answer:
Iron deficiency
Explanation:
or more scientifically explained as decreased hemoglobin levels in your blood but still caused by lack of iron.
Answer:
Explanation:
According to the free body diagram, in this case, we have:
Recall that the force of friction is given by:
Replacing and solving for the coefficient of kinetic friction:
We have an uniformly accelerated motion. Thus, the acceleration is defined as:
Finally, we calculate :
The measurement of sound is in decibels.
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
= = 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration = = 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN
Answer:
W = 222 N.
Explanation:
The qiestion says" If the acceleration of gravity on the surface of the planet Mercury is 3.7 m / s2, then what would be the weight of a person with mass 60 kg on its surface?
"
Mass of the person, m = 60 kg
The acceleration due to gravity on the surface of gravity is 3.7 m/s²
We need to find the weight of a person on the surface of Mercury.
Weight of an object is given by :
W = mg
So,
W = 60 kg × 3.7 m/s²
W = 222 N
Hence, the person will weigh 2222 N on the surface of Moon.