Answer:
Instantaneous velocity
Explanation:
Acceleration = rate of change of velocity
Average velocity = total displacement divided by total time taken
Position = It shows the location of the object
Instantaneous velocity = It is the velocity of an object at a particular instant.
The term that describes how fast and in what direction an object is moving at a particular moment is "instantaneous velocity". It is basically equal to the derivative of position wrt time.
Answer:
I hope the picture below help.
Explanation:
Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s
Answer:
t = 300.3 seconds
Explanation:
Given that,
The mass of a freight train, 
Force applied on the tracks, 
Initial speed, u = 0
Final speed, v = 80 km/h = 22.3 m/s
We need to find the time taken by it to increase the speed of the train from rest.
The force acting on it is given by :
F = ma
or

So, the required time is 300.3 seconds.
Answer:
YES
Explanation:
Gravity acts as the centripetal force and the velocity earth has keeps it from falling on the sun.