Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
where are the mass of the swimmer and raft, respectively. are the velocities of the swimmer and the raft after the run, respectively. We can solve for
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore
Benthos
Option b is the answer
C. Rotations per second
Or normally we'd use Radians Per second
_Brainliest if helped!!
It is because the potential energy is similar to MgH.
When it comes to MgH, it means mass, gravity and height respectively.
By using the value of acceleration, seema will find the potential energy of a ball.
Answer:
t = 12,105.96 sec
Explanation:
Given data:
weight of spacecraft is 2000 kg
circular orbit distance to saturn = 180 km
specific impulse = 300 sec
saturn orbit around the sun R_2 = 1.43 *10^9 km
earth orbit around the sun R_1= 149.6 * 10^ 6 km
time required for the mission is given as t
where
is gravitational parameter of sun = 1.32712 x 10^20 m^3 s^2.
t = 12,105.96 sec