Energy Conservation Theory,




<h3>What is law of energy conservation?</h3>
The principle of energy conservation states that energy is neither created nor destroyed. It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics
To learn more about Energy Conservation Theory, visit;
brainly.com/question/8004680
#SPJ4
The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
Answer:
T = 76.39°C
Explanation:
given,
coffee cup temperature = 95°C
Room temperature= 20°C
expression

temperature at t = 0

T(0) = 95°C
temperature after half hour of cooling

t = 30 minutes


T(30) = 61.16° C
average of first half hour will be equal to

![T = \dfrac{1}{30}[(20t - \dfrac{75 e^{\dfrac{-t}{50}}}{\dfrac{1}{50}})]_0^30](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820t%20-%20%5Cdfrac%7B75%20e%5E%7B%5Cdfrac%7B-t%7D%7B50%7D%7D%7D%7B%5Cdfrac%7B1%7D%7B50%7D%7D%29%5D_0%5E30)
![T = \dfrac{1}{30}[(20t - 3750e^{\dfrac{-t}{50}}]_0^30](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820t%20-%203750e%5E%7B%5Cdfrac%7B-t%7D%7B50%7D%7D%5D_0%5E30)
![T = \dfrac{1}{30}[(20\times 30 - 3750 e^{\dfrac{-30}{50}} + 3750]](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820%5Ctimes%2030%20-%203750%20e%5E%7B%5Cdfrac%7B-30%7D%7B50%7D%7D%20%2B%203750%5D)
![T = \dfrac{1}{30}[600 - 2058.04 + 3750]](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B600%20-%202058.04%20%2B%203750%5D)
T = 76.39°C
The answer would be B. This is because all planets in our galaxy orbit the sun.
Separation of light into different color is called "dispersion". Rainbow, comes from refraction and reflection of sunlight, in the falling raindrops, which means that that the refractive index of water depends on the wavelength of light.