Answer:
New pressure P2 = 4.95 atm
Explanation:
Given:
Old volume V1 = 1.50 L
New volume V2 = 0.50 L
Old pressure P1 = 1.65 atm
Find:
New pressure P2
Computation:
P1V1 = P2V2
So,
(1.50)(1.65) = (0.50)(P2)
New pressure P2 = 4.95 atm
Answer:
K = 2.96x10⁻¹⁰
Explanation:
Based on the initial reaction:
N2O4 ⇄ 2NO2; K = 1.5x10³
Using Hess's law, we can multiply this reaction changing K:
3 times this reaction:
3N2O4 ⇄ 6NO2; K = (1.5x10³)³ =3.375x10⁹
The inverse reaction has a K of:
6NO2 ⇄ 3N2O4 K = 1/3.375x10⁹;
<h3>K = 2.96x10⁻¹⁰</h3>
Look it up, it’s not that hard.
The balanced chemical reaction is:
<span>2H2+O2-->2H2O
</span>
To determine the mass of hydrogen that is needed, we need use the initial amount of oxygen and relate it to hydrogen from the reaction given. We do as follows:
192 g O2 ( 1 mol O2 / 32 g O2) ( 2 mol H2 / 1 mol O2 ) ( 2.02 g H2 / 1 mol H2 ) = 24.24 g H2