Answer:
- 53 protons
- 131g
- Iodine
- Halogens
Explanation:
atomic no. = no. of protons
= 53 proton
mass = no. of protons + no. of
neutrons
= 53 + 78
= 131
Answer:
An atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.
For example,
Al atom has 13 protons and 13 electrons. The number of positive and negative charge is equal thus it will be neutral atom.
While the atom of Al which have 13 proton and 10 electron is not neutral. The positive charge is greater than negative by 3. Which means 3 electrons are lose by Al atom and form cation "Al⁺³".
Thus an atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)
Answer:
The mass of reactants and products are equal hence the reaction obeys law of conservation of mass
Explanation:
The law of mass conservation states that for a closed system to all transfer of mass, the mass of system must remain constant over time. This means for a chemical reaction, the mass of reactants must equal the mass of products.
if 2.796g of Zn reacts with 2.414g of sulphur to produce 4.169g of ZnS ad 1.041g of unreacted sulphur, then it means that accorfing to the law of mass conservation, the mass of reactants (zinc and sulphur), must be equal to mass of products (zinc sulfide and unreacted sulphur)
Mass of reactants = 2.796g + 2.414g =5.21g
Mass of products = 4.169g + 1.041g=5.21g
Answer:
3.01 × 10²³ molecules
Explanation:
Step 1: Given data
Moles of water (n): 0.500 mol
Step 2: Calculate the molecules of water present in 0.500 moles of water
In order to perform this calculation, we will use the Avogadro's number: in 1 mole of water there are 6.02 × 10²³ molecules of water.
0.500 mol × (6.02 × 10²³ molecules/1 mol) = 3.01 × 10²³ molecules
Answer:
Cost to supply enough vanillin is 
Explanation:
Threshold limit of vanillin in air is
per litre means there should be
of vanillin in 1L of air to detect aroma of vanillin.

So, 
So amount of vanillin should be present to detect = 
As cost of 50 g vanillin is
therefore cost of
vanillin = 