Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
The vapor pressure at 60.6°C is 330.89 mmHg
Explanation:
Applying Clausius Clapeyron Equation
![ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%20%3D%20%5Cfrac%7B%5Cdelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
Where;
P₂ is the final vapor pressure of benzene = ?
P₁ is the initial vapor pressure of benzene = 40.1 mmHg
T₂ is the final temperature of benzene = 60.6°C = 333.6 K
T₁ is the initial temperature of benzene = 7.6°C = 280.6 K
ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol
R is gas rate = 8.314 J/mol.k
![ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%20%5Cfrac%7B31%2C000%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B280.6%7D-%20%5Cfrac%7B1%7D%7B333.6%7D%5D%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%280.003564%20-%200.002998%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%20%280.000566%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%202.1104%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%20e%5E%7B2.1104%7D%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%208.2515%5C%5C%5C%5CP_2%20%3D%20%2840.1%2A8.2515%29mmHg%20%3D%20330.89%20mmHg)
Therefore, the vapor pressure at 60.6°C is 330.89 mmHg
Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
Over time, yes. It will over time gain more momentum
Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis