A motor is built to use all those things and produce mechanical energy.
Answer:
If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Explanation:
The motion of the ceiling is y = Y sinωt
y = 0.05 sin (2 π × 2) t
y = 0.05 sin 4 π t
K = 25 lb/ft × 4 sorings
K = 100 lb/ft
Amplitude of the microscope ![\frac{X}{Y}= [\frac{1+2 \epsilon (\omega/ W_n)^2}{(1-(\frac{\omega}{W_n})^2)^2+(2 \epsilon \frac{\omega}{W_n})^2}]](https://tex.z-dn.net/?f=%5Cfrac%7BX%7D%7BY%7D%3D%20%5B%5Cfrac%7B1%2B2%20%5Cepsilon%20%28%5Comega%2F%20W_n%29%5E2%7D%7B%281-%28%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%29%5E2%2B%282%20%5Cepsilon%20%20%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%7D%5D)
where;


= 
= 4.0124
replacing them into the above equation and making X the subject of the formula:



Therefore; If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Answer:
Their bodies don't conduct electricity like we do.
Explanation:
Answer:POGGERS thx i rl needed this have a good day also something a regret the most is searching up henhai i am now addicted
Answer: Density
Explanation: Recall Archimedes Principle. There are two forces acting an object submerged in a liquid: the force of gravity and the (opposite directed) force of buoyancy. The buoyancy is proportional to the mass of the liquid displaced by the submerged part of the object.
Density is the ratio of mass to volume. Therefore if the density of the submerged object is higher than that of the displaced liquid, the net force will point in the direction of the gravity (object will sink). In the opposite case, the net force will point in the direction of the buoyant force (upward) and the object will float.