Answer: 184,615,384.6 years
Explanation:
This problem can be solve by the following equation:
(1)
Where:
is the spreading rate of the seafloor, its velocity
is the distance the Africa's west coast moved at this rate
is the time it took to the coast to move the descibed distance
Isolating
from (1):
(2)
(3)
Finally:
This is the time it took to the Africa's west coastto move away from the Mid atlantic ridge.
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
Answer:
0.89 g/cm^3 = 890 kg/m^3
Explanation:
Cross sectional area of U-tube ( A ) = 1.00 cm^2
volume of oil ( V ) = 5.00 cm^3
change between top surface = 0.550 cm
height of oil = 5 cm ( volume / area )
height of water = 5 - 0.550 = 4.45 cm
pressure at the oil-water junction = Pressure on the second side of the U-tube at same level
Po * g * Hoil = Pw * g * Hwater
Po * 5 = 1 * 4.45
∴ Density of oil ( Po ) = 4.45 / 5 g/cm^3 = 0.89 g/cm^3
The kinetic energy is greater on the second hill
hope i helped have a great day
Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m