Answer:
phase difference = π / 2
constructive interference
Explanation:
Given data
wavelength = 420 nm
1st beam = 105 nm
path difference = 105 nm
to find out
phase difference and interference pattern of the two beams
solution
we use here equation of phase difference that is
phase difference = 2π / wavelength × Δx
put here value
phase difference = 2π / 420 × 105
phase difference = π / 2
and
we know that here path difference Δx is the integral multiple of the wavelength so it will be constructive interference
Δx is wavelength / 4
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Resistance is current x potential difference. So therefor run wafff
Answer:
A
Explanation:
The answer is A because proton number is the same as atomic number
Answer: b) they are the areas where Earth's magnetic field is weakest
Explanation:
According to classical physics, a magnetic field always has two associated magnetic poles (north and south), the same happens with magnets. This is because for <em>classical physics</em>, naturally, magnetic monopoles can not exist.
In this context, Earth is similar to a magnetic bar with a north pole and a south pole. This means, the axis that crosses the Earth from pole to pole is like a big magnet.
Now, by convention, on all magnets the north pole is where the magnetic lines of force leave the magnet and the south pole is where the magnetic lines of force enter the magnet. Then, for the case of the Earth, the north pole of the magnet is located towards the geographic south pole and the south pole of the magnet is near the geographic north pole.
Being the magnetic poles the places where the Earth's magnetic field is weakest. And it is for this reason, moreover, that the magnetic field lines enter the Earth through its magnetic south pole (which is the geographic north pole).