When driver see the child standing on road his speed is 20 m/s
So here at that instant his reaction time is 0.80 s
He will cover a total distance given by product of speed and time



now after this he will apply brakes with acceleration a = 7 m/s^2
so the distance covered before it stop is given by



so the total distance covered by it


<em>so it will cover a total distance of 44.6 m</em>
Answer:
The last part on the right side of the diagram
Explanation:
Im on plato and just got it right :)
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
1.) The object's Velocity
Faster it goes, more kinetic energy it has
Approximately 150-200 species.