Answer:

Explanation:
Maximum height of the pumpkin, 
Initial speed, v = 22 m/s
We need to find the angle with which the pumpkin is fired. the maximum height of the projectile is given by :

On rearranging the above equation, to find the angle as :



So, the angle with which the pumpkin is fired is 39.49 degrees. Hence, this is the required solution.
Oceanic because it’s denser
Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
Answer:

Explanation:
From the question, using the expression:

where;



This is a combined intensity of 4 speakers.
Thus, the intensity of 3 speakers = 
= 2.372 W/m²
Thus;

