It would be A because Decomposition is when a substance breaks down into two.
Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
Absorption happens when <span>all of the energy from light waves is transferred to a medium.</span>
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
<h2>Answer:</h2>
<u>Acceleration is </u><u>-10.57 rad/s² </u>
<u>Time is </u><u>6 seconds</u>
<h2>Explanation:</h2><h3>a) </h3>
u=900rpm= 94.248 rad/s
v =300rpm= 31.416 rad/s
s=60 revolutions= 377 rad
v²= u²+ 2as
31.416² = 94.248²+ 2 * a * 377
a = v²-u² / 2s
a= -10.57 rad/s²
<h3>b) </h3>
Using 1st equation of motion
v-u/a = t
Putting the values
t = (31.4 - 94.2)/-10.57
t = 6 seconds