Answer:
a) = 10.22 rad/s
b) = 0.35 m
Explanation:
Given
Mass of the particle, m = 1.1 kg
Force constant of the spring, k = 115 N/m
Distance at which the mass is released, d = 0.35 m
According to the differential equation of s Simple Harmonic Motion,
ω² = k / m, where
ω = angular frequency in rad/s
k = force constant in N/m
m = mass in kg
So,
ω² = 115 / 1.1
ω² = 104.55
ω = √104.55
ω = 10.22 rad/s
If y(0) = -0.35 m and we want our A to be positive, then suffice to say,
The value of coefficient A in meters is 0.35 m
Answer:
i don't know if this is good for you but
Explanation:
ignoring frictional air resistance (drag) the speed on return is the same as when it left the ground (5 m/s but in the opposite direction).
Note: this points out a good reason for not firing live bullets into the air..they will return somewhere and at the same speed.
However, if you take into account the atmospheric drag the reurn speed will be somewhat smaller (but in the case of a bullet, probably still lethal.) Drag depends on many factors and is difficult to calculate.
Enough data points would have been collected when specific data for upward and downward motion are collected.
<h3>
What is a Data point?</h3>
A data point is a discrete unit of information. This information is always unique.
<h3>Free fall</h3>
An object subjected to free fall is under the influence of gravity. An object subjected has different time of motion for upward and downward motion.
Thus, we can conclude that enough data points would have been collected when specific data for upward and downward motion are collected.
Learn more about free fall here: brainly.com/question/10909077