Answer:
R = 4.24 x 10⁻⁴ m
Explanation:
given,
mass of the person = 60.3-kg
mass of the bullet = 10 gram = 0.01 Kg
velocity of bullet = 389 m/s
angle made with the horizontal = 45°
using conservation of momentum.
M v + m u = ( M + m ) V
60.3 x 0 + 0.01 x 389 = (60.3 + 0.01) V


V = 0.0645 m/s
for calculation of range


R = 4.24 x 10⁻⁴ m
the distance actor fall is R = 4.24 x 10⁻⁴ m
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:

Conductors allow<span> for </span>charge<span> transfer </span>through<span> the free movement of </span><span>electrons
</span>
Hi there!
The answer would be B. the slope of the plane.
Changing the slope of the plane would show how fast the ball went when Galileo changed the steepness of the slope. If he didn’t change the slopes steepness he would have the same results each time.
Hope this helps !