Given :
A 120 kg box is on the verge of slipping down an inclined plane with an angle of inclination of 47º.
To Find :
The coefficient of static friction between the box and the plane.
Solution :
Vertical component of force :

Horizontal component of force(Normal reaction) :

Since, box is on the verge of slipping :

Therefore, the coefficient of static friction between the box and the plane is 1.07.
Hence, this is the required solution.
Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.
<h2>
Speed with which it return to its initial level is 100 m/s</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 100 m/s
Acceleration, a = -9.81 m/s²
Final velocity, v = ?
Displacement, s = 0 m
Substituting
v² = u² + 2as
v² = 100² + 2 x -9.81 x 0
v² = 100²
v = ±100 m/s
+100 m/s is initial velocity and -100 m/s is final velocity.
Speed with which it return to its initial level is 100 m/s