Answer:
0.48 m
Explanation:
I'm assuming that this takes place in an ideal situation, where we neglect a host of factors such as friction, weight of the spring and others
If the mass is hanging from equilibrium at 0.42 m above the floor, from the question, and it is then pulled 0.06 m below that particular position. This pulling is a means of adding more energy into the spring, when it is released, the weight compresses the spring and equals its distance (i.e, 0.06 m) above the height.
0.42 m + 0.06 m = 0.48 m
At the highest point thus, the height is 0.48 m above the ground.
Answer:
d) 0 V
Explanation:
It can be showed that the potential due to a point charge q, to a distance d from the charge, can be expressed as follows:

where k = 
As the potential is an scalar, and is linear with the charge, we can apply the superposition principle, which means that we can find the potential due to one of the charges, as if the other were not present.
By symmetry, all four charges are at the same distance from the center, so we can write the total potential, as follows:

where d, is the semi-diagonal of the square, that we can find applying Pythagorean theorem, as follows:

Replacing by the values in (1) we have:

which is equal to the option d).
Answer:
The answer is B, although technically that is an eclipse.
Answer:

Explanation:
According to Gauss's Law, the electric flux of a charged sphere is the electric field multiplied by the area of the spherical surface:

This is identical to the electric flux of a point charge located in the center of the sphere.

Every one has a reason in life. You may not know what it is just yet, but you do.