Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Answer:
The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.
Explanation:
For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.
Q = π(ΔPR⁴/8μL)
where Q = volumetric flowrate
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe
ΔP = μ(8QL/πR⁴)
ΔP = Kμ
K = (8QL/πR⁴) = constant (for this question)
ΔP = Kμ
K = (ΔP/μ)
So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).
μ₁ = (μ/2)
The new pressure drop (ΔP₁) is then
ΔP₁ = Kμ₁ = K(μ/2)
Recall,
K = (ΔP/μ)
ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)
Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.
Hope this Helps!!!
Answer:
The flexural strength of a specimen is = 78.3 M pa
Explanation:
Given data
Height = depth = 5 mm
Width = 10 mm
Length L = 45 mm
Load = 290 N
The flexural strength of a specimen is given by


78.3 M pa
Therefore the flexural strength of a specimen is = 78.3 M pa
Answer: True
Explanation: Ceramics have the property that when the band gap present between the atoms are larger than the light energy then the tend to become opaque because the light scattering is caused . They also show the property of being translucent when there are chances of the light to get a path through the surface of ceramic so they get the light at some parts e.g.porcelain .Therefore the statement given is true that ceramics can be optically opaque or semi-transparent(translucent).