1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
14

Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of t

he turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.
Engineering
1 answer:
attashe74 [19]3 years ago
6 0

Answer:

(a) the reversible power output of turbine is 5810 kw

(b) The second-law efficiency of he turbine = 86.05%

Explanation:

In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.

h1 = 3658 kJ/kg s1=7.167 kJ/kgK

In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state

h2 = 2682kl/kg S2= 7.694 kJ/kg

Assuming that the energy balance equation given  

Wout=m [h1-h2+(v1²-v2²) /2]

Let

W =5 MW

V1= 80 m/s  V2= 140 m/s

h1 = 3658kJ/kg  h2 = 2682 kJ/kg

∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)

m = 5.158kg/s

Consider the energy balance equation given  

Wrev,out =Wout-mT0(s1-s2)

Substitute Wout =5 MW m = 5.158kg/s 7

s1=  7.167 kJ/kg-K            s2= 7.694kJ/kg-K and 25°C .

Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)

= 5810 kW

(a) Therefore, the reversible power output of turbine is 5810 kw.

The given values of quantities were substituted and the reversible power output are calculated.

(b) Calculating the second law efficiency of the turbine:  

η=Wout/W rev,out

Let Wout =  5 MW and Wrev,out = 5810 kW  

η=(5 MW x 1000 kW)/(1 MW *5810)  

η= 86.05%

You might be interested in
Determine (a) the principal stresses and (b) the maximum in-plane shear stress and average normal stress at the point. Specify t
raketka [301]

Answer:

a) 53 MPa,  14.87 degree

b) 60.5 MPa  

Average shear = -7.5 MPa

Explanation:

Given

A = 45

B = -60

C = 30

a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)

P1 = 53 MPa

Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)

P1 = -68 MPa

Tan 2a = C/{(A-B)/2}

Tan 2a = 30/(45+60)/2

a = 14.87 degree

Principal stress

p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa

b) Shear stress in plane

Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa

Average = (45-(-60))/2 = -7.5 MPa

5 0
3 years ago
An electric kettle is required to heat 0.64 kg of water from 15.4°C to 98.2°C in six
skelet666 [1.2K]

Answer:

Almost done

Explanation:

I am just finishing up my work

7 0
2 years ago
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
-Mn has a cubic structure with a0 = 0.8931 nm and a density of 7.47 g/cm3. -Mn has a different cubic structure, with a0 = 0.63
Fudgin [204]

Answer:

The percentage volume change is -3.0%

Explanation: We are to determine the percentage change that will occurs is alpha-Mn is transformed to beta-Mn

Value are defined as;

Cubic structure (a0) for alpha-Mn = 0.8931nm = 0.8931e-9m = 7.1236e-28cm3

Cubic structure (a0) for beta-Mn = 0.6326nm = 0.6326e-9m = 2.5316e-28cm3

Density of alpha-Mn = 7.47g/cm3

Density of beta-Mn = 7.26g/cm3

Atomic weight of Mn = 54.938g/mol

Atomic radius of Mn = 0.112nm

STEP1: CALCULATE THE ATOM NUMBER PER CELL IN THE ALPHA-Mn;

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight ) × 100000

(7.47× 7.1236e-28 × 6.02e23) ÷ 54.938 = 58.31

Therefore the number of Atom in alpha-Mn is 58.31 atom per cell

STEP2: CALCULATE THE NUMBER OF ATOM PER CELL IN THE BETA-Mn

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight) × 1000000

(7.26 × 2.5316e-28 × 6.02e23) ÷ 54.938 = 20.14

Therefore the number of Atom in beta-Mn is 20.14 atom per cell

STEP3: CALCULATE THE PERCENTAGE VOLUME OF ALPHA-Mn AND BETA-Mn

V% = [(volume of atom × number of atom per cell) ÷ volume of unit cell] × 1000

For Alpha-Mn:

[(1.4049e-30 × 58.31) ÷ 7.1236e-28] × 1000 = 114.998%

For Beta-Mn:

[(1.4049e-30 × 20.14) ÷ 2.5316e-28] × 1000 = 111.766%

STEP4: CALCULATE THE CHANGE IN PERCENTAGE VOLUME FOR ALPHA TO TRANSFORM TO BETA

change = final state - initial state

Therefore;

Change = 111.766 - 114.998 = -3.23%

Therefore for a transformation of Alpha-Mn to Beta-Mn they will be a decrease in volume

3 0
3 years ago
The best saw for cutting miter joints is the
ZanzabumX [31]

Answer:

The best saw for cutting miter joints is the backsaw.

Add-on:

i hope this helped at all.

6 0
3 years ago
Other questions:
  • For a p-n-p BJT with NE 7 NB 7 NC, show the dominant current components, with proper arrows, for directions in the normal active
    14·1 answer
  • What will the following segment of code output? score = 95; if (score > 95) cout << "Congratulations!\n"; cout <<
    9·1 answer
  • Design a PI controller to improve the steady-state error. The system should operate with a damping ratio of 0.8. Compute the ove
    10·1 answer
  • 2. The initially velocity of the box and truck is 60 mph. When the truck brakes such that the deceleration is constant it takes
    12·1 answer
  • The fluid-conditioning components of hydraulic-powered equipment provide fluid that is clean and maintained at an acceptable ope
    6·1 answer
  • You are watching the weather forecast and the weatherman says that strong thunderstorms and possible tornadoes are likely to for
    15·1 answer
  • A steel bar 100 mm long and having a square cross section 20 mm x 20 mm is pulled in
    6·1 answer
  • Print reading for industry unit 9 review questions
    6·2 answers
  • Select the correct answer.
    6·1 answer
  • Calculate the resistance of a circuit with 1.5 A and 120 V. Use the appropriate formula from the list of formulas on the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!