- Magnitude: 12.1 N.
- Direction: 17.0° to the 8 N force.
<h3>Explanation</h3>
Refer to the diagram attached (created with GeoGebra). Consider the 5 N force in two directions: parallel to the 8 N force and normal to the 8 N force.
.
.
The sum of forces on each direction will be the resultant force on that direction:
- Resultant force parallel to the 8 N force:
. - Resultant force normal to the 8 N force:
.
Apply the Pythagorean Theorem to find the magnitude of the resultant force.
(3 sig. fig.).
The size of the angle between the resultant force and the 8 N force can be found from the tangent value of the angle. Tangent of the angle:
.
Find the size of the angle using inverse tangent:
.
In other words, the resultant force is 17.0° relative to the 8 N force.
1/16........................................
The correct formula for calculating the tangential speed of an orbiting object is V(t)=wr.
V(t)= Tangential Speed
w= Angular Velocity
r= Radius of the Path
Hope this helps.
Answer:
a ) = 381.48 J
b )= 84.25 cm
Explanation:
Kinetic energy of the runner
= 1/2 m v²
= .5 x 66 x 3.4²
= 381.48 J
The final kinetic energy of the runner is zero .
Loss of mechanical energy
= 381.48 J
This loss in mechanical energy is due to action of frictional force .
b )
Let s be the distance of slide
deceleration due to frictional force
= μmg/m
.7 x 66 x 9.8 / 66
a = - 6.86 m s⁻¹
v² = u² - 2 a s
0 = 3.4² - 2x6.86 s
s = 3.4² / 2x6.86
= .8425 m
84.25 cm
Answer:
Work done, W = 750 joules
Explanation:
It is given that,
Force acting on the object, F = 50 N
It moves to a distance of, d = 15 meters
We need to find the work done on an object. We know that the product of force and distance covered is called the work done. As the force and the displacement are in same direction. So,


W = 750 joules
So, the work done on an object is 750 joules. Hence, this is the required solution.