Answer:
66.2 sec
Explanation:
C₁ = 1.0 F
C₂ = 1.0 F
ΔV = Potential difference across the capacitor = 6.0 V
C = parallel combination of capacitors
Parallel combination of capacitors is given as
C = C₁ + C₂
C = 1.0 + 1.0
C = 2.0 F
R = resistance = 33 Ω
Time constant is given as
T = RC
T = 33 x 2
T = 66 sec
V₀ = initial potential difference across the combination = 6.0 Volts
V = final potential difference = 2.2 volts
Using the equation


t = 66.2 sec
Answer:
I'm pretty sure its 3m/s^2 for the acceleration but I don't know the force part sorry .
Explanation:
15m/s - 0m/s divided by 5 s = 3m/s
I'm no expert or anything so I could be wrong but this is the best I can give you. Sorry
Answer:
Newton's first law: An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force. ... An object sliding across a table or floor slows down due to the net force of friction acting on the object.
Explanation:
please give me a heart
Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU