<span>the first major step for the dan replication to take place is the breaking of hydrogen bonds between bases of the two antiparallel strands </span>
Ether
methoxypropane (methyl propyl ether)
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
Answer:
Oxidation is defined as the chemical process in which substance loses electron and hydrogen or gain oxygen while in the process of reduction, substance gains electron and hydrogen or loses oxygen.
So, from the given equation:
a. It is an oxidation reaction as Rb loses one elctron.
b. It is a reduction reaction as Te gains two electrons and become Te2-
c. It is a reduction reaction as H atom gains electrons.
d. It is an oxidation reaction as P loses 3 electrons.
As concentrated energy is used to do WORK, it becomes spread out.
The universe is made up of constant supply of energy. Energy is use to do work; the usefulness of energy is been degraded as it is been used to carry out work. For instance, the energy in petrol is used to run motor vehicles, the process result in the conversion of the chemical energy in the petrol to heat energy. The heat energy that is produced can not be easily gathered and used again, thus, the usefulness of that heat energy has been degraded.