Answer:
97 J
Explanation:
Step 1: Given data
- Mass of the sample (m): 12 kg
- Specific heat capacity (c): 0.231 J/kg.°C (this can also be expressed as 0.231 J/kg.K)
- Initial temperature: 45 K
Step 2: Calculate the temperature change
ΔT = 80 K - 45 K = 35 K
Step 3: Calculate the heat required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.231 J/kg.K × 12 kg × 35 K = 97 J
Answer:
0.045 L or 45 mL
Explanation:
Moles = Mass/M.Mass
Moles = 10 g / 109.94 g/mol
Moles = 0.09 moles
Also,
Molarity = Moles / Vol in L
Or,
Vol in L = Moles / Molarity
Vol in L = 0.09 mol / 2 mol/L
Vol in L = 0.045 L
The response would become spontaneous if the value of ΔG° was negative.
According to the estimated value of ΔG°, it is shown that ΔG° value decreases as temperature value increases. The value shifts from being more favorable to being less favorable. It would appear that the value of ΔG° would be negative at a specific temperature, causing the reaction to occur spontaneously.
The reaction is in an equilibrium state if ΔG = 0. If ΔG < 0, the reaction is spontaneous in the direction written. The relationship between terms from the equilibrium is paralleled by the relevance of the sign of a change in the Gibbs free energy.
Learn more about ΔG° here:
brainly.com/question/14512088
#SPJ4