Answer:
The ration of molar concentration is "2.5".
Explanation:
The given values are:
Average density of salt water,
= 
Net pressure,
= 
Increase in pressure,
= 
Now,
The under water pressure will be:
= 
= 
= 
= 
hence,
The ratio will be:
= 
or,
= 
= 
= 
The energy range expected is 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
The energy of the photon is given by;
E = hc/λ
E = energy of the photon
h = Plank's constant
c = speed of light
λ = wavelength of light
For the upper boundary range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ = 270 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 270 × 10^-9
E = 7.33 × 10^-19 J
For the lower range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ =300 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 300 × 10^-9
E = 6.6 × 10^-19 J
Hence, the energy range 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
Learn more: brainly.com/question/24857760
Answer:
Their average kinetic energy increases
Explanation:
The average kinetic energy of the rice molecules increases as the pot is left on the cooking stove.
Heat is transferred to the pot by conduction from the heat source. The heat is then transferred to the rice in the cooking pot by convection.
- As the water in the pot heats up.
- The rice gains thermal energy.
- This causes the molecules of the rice particles to start vibrating.
- As the molecules vibrate about their fixed position, their thermal energy continues to increase.
- Therefore, the amount of heat absorbed by the rice increases with time and this actually cooks the food.
Answer:
12 grams of hydrogen gas
and 56 grams of nitrogen gas
The molar mass of ammonia is 17 g/mol.
68 grams of ammonia corresponds to
17g/mol
68g
=4moles
4 moles of ammonia will be obtained from
2
4×1
=2 moles of nitrogen and
2
4×3
=6 moles of hydrogen.
The molar masses of nitrogen and hydrogen are 28 g/mol and 2 g/mol respectively.
2 moles of nitrogen corresponds to 2×28=56 grams.
6 moles of hydrogen corresponds to 6×2=12 grams.