If you type in the letters (uppercase and lowercase matters) into google it will give you the answers
Option C. The object is returning to the start at a constant speed.
<h3>
Data points of the Position vs Time graph</h3>
The following data points will be used to determine the motion of the object.
<u>Position Time</u>
12 4
10 6
2 8
0 10
From the data above, the position of the object is decreasing towards zero or start point.
Thus, the object is returning to the start at a constant speed.
Learn more about position here: brainly.com/question/2364404
#SPJ1
16. FALSE
17. TRUE
18. FALSE
19. TRUE
20. TRUE
Answer:
The effective nuclear charge for a valence electron in oxygen atom:
Explanation:
Effective nuclear charge is the net nuclear charge experienced by the electron in a given atom. It is always less than the actual charge of the nucleus [Z], due to shielding by electrons in the inner shells.
<em>It is equal to the difference between the actual nuclear charge or the atomic number (Z) and the shielding constant (s). </em>
<u>For an oxygen atom</u>-
Electron configuration: (1s²) (2s² 2p⁴)
<em>The atomic number (actual nuclear charge): </em>Z = 8
The shielding constant (s) for a valence electron can be calculated by using the Slater's rules:
⇒ s = 5 × 0.35 + 2 × 0.85 = 1.75 + 1.7 = 3.45
<u><em>Therefore, the effective nuclear charge for a valence electron in oxygen atom is:</em></u>
<u>Therefore, the effective nuclear charge for a valence electron in oxygen atom:</u>
Answer:
The system gains 126100 J
Explanation:
The heat can be calculated by the equation:
Q = nxCxΔT, where Q is the heat, C is the heat capacity,n is the number of moles and ΔT is the variation of temperature (final - initial). The number of moles is the mass divided by the molar mass, so:
n = 250/4 = 62.5 mol.
The system must be in thermal equilibrium with the surroundings, so if the temperature of the surroundings decreased 97 K, the temperature of the system increased by 97 K, so ΔT = 97 K
Q = 62.5x20.8x97
Q = 126100 J