Answer:
1.7 moles of ammonia, NH₃.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Finally, we shall determine the number of mole of ammonia, NH₃, needed to produce 1.7 moles of nitrogen monoxide, NO. This can be obtained as follow:
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 1.7 moles of NH₃ will also react to produce 1.7 moles of NO.
Thus, 1.7 moles of ammonia, NH₃, is required.
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
Barium chloride and lithium sulfate are mixed, barium sulfate and lithium chloride are formed. Barium sulfate is obtained as a white precipitate and lithium chloride as an aqueous solution.
Hope it helped!
Answer:
B: electronegativity
Explanation:
Electronegativity is the measure of how strongly atoms attract bonding electrons to themselves.
A is incorrect because Atomic radius though decreases as you go from lithium to fluorine of the periodic table. Atomic radius increases when you go from either top to bottom of the periodic table, or if you go from right to left. So answer A is inaccurate.
C is incorrect because in period 2, all the elements have two electron subshells. For example, Al has 13 electrons. So it has two electron subshells. This is since the first subshell has only two valence electrons and while the second subshell in Al has 11 valence electrons. Therefore, it is inaccurate to say this answer.
D is incorrect because in the first shell, you can only have a max of two electrons. The first shell neither decreases or increases. Therefore, D is inaccurate too.
B is correct because as you go from the periodic table from left to right, the electronegativity and ionization energy increases. This is since the more valence electrons an element has, the more electronegative is. Fluorine for example is desperately trying to get one more electron to have a total of 8 electrons. It wants to have a full shell. Therefore, B is the most relevant answer.
Answer:
Where is the results and what is the question or is there a picture
Explanation: