1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
6

Find the x- and y-intercepts of the function f(x) = log(2x + 1) − 1.

Mathematics
1 answer:
sleet_krkn [62]3 years ago
6 0
<span>Alright, here's your answer.

y-intercept is computed (not found) by assigning x = 0 and computing y: here that is f(0) = Log(2*0 + 1) – 1 = Log(1) – 1 = 0 – 1 = -1 
y-intercept is (0, -1) 

x-intercept is computed by solving f(x) = 0 for x: here that is 
0 = Log(2x + 1) – 1 → 1 = Log(2x + 1) 

Assuming the Log cited is base 10, then 10^1 = 10^Log(2x + 1) = 2x + 1 

That’s 10 = 2x + 1 

Therefore 9 = 2x 
x = 9/2 = 4.5 
Check this result in the original equation, I did! 

Your answer is - x-intercept is (4.5, 0)

I hope I helped! :)

</span>
You might be interested in
Multiply polynomials
Burka [1]

<em>Answer</em><em> </em>-2x^4 - 2x^3 + 22x^2 - 30x + 12

<em>Here's</em><em> your</em><em> </em><em>solution</em>

=> <em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>-</em><em> </em><em>(</em><em>x^</em><em>2</em><em> </em><em>+</em><em> </em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em> </em><em>=</em><em>></em><em> </em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>-x^</em><em>2</em><em> </em><em>-</em><em> </em><em>3</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em>

<em> </em><em>=</em><em>></em><em> </em><em>firstly</em><em> </em><em>multiple</em><em> </em><em>whole</em><em> </em><em>with </em><em>-x^</em><em>2</em><em> </em>

<em>=</em><em>></em><em> </em><em>-x^</em><em>2</em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>-2x^</em><em>4</em><em> </em><em>+</em><em> </em><em>4</em><em>x</em><em>^</em><em>3</em><em> </em><em>-</em><em> </em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em>

<em>=</em><em>></em><em> </em><em>now </em><em>with</em><em> </em><em>-3x </em>

<em> </em><em>=</em><em>></em><em> </em><em>-3x(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>-6x^</em><em>3</em><em> </em><em>+</em><em>1</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-6x </em>

<em>=</em><em>></em><em> </em><em>with</em><em> </em><em>6</em>

<em>=</em><em>></em><em> </em><em>6</em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>2</em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>2</em>

<em> </em><em>=</em><em>></em><em> </em><em>now </em><em>add </em><em>all </em><em>terms</em><em> </em>

<em>=</em><em>></em><em> </em><em>-2x^</em><em>4</em><em> </em><em>-</em><em> </em><em>2</em><em>x</em><em>^</em><em>3</em><em> </em><em>+</em><em> </em><em>2</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>3</em><em>0</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>2</em>

<em>hope</em><em> it</em><em> helps</em><em> and</em><em> your</em><em> day</em><em> will</em><em> be</em><em> full</em><em> of</em><em> happiness</em><em> </em>^_^

4 0
2 years ago
A cigarette industry spokesperson remarks that current levels of tar are no more than 5 milligrams per cigarette. A reporter doe
d1i1m1o1n [39]

Answer:

t=\frac{5.63-5}{\frac{1.61}{\sqrt{15}}}=1.516  

df=n-1=15-1=14  

Since is a right tailed test the p value would be:  

p_v =P(t_{14}>1.516)=0.076  

If we use a significance level of 0.05 we see that p_v > \alpha and then we can conclude that we don't have evidence in order to conclude that the mean is higher than 5.63, so then the claim makes sense.

Step-by-step explanation:

Data given and notation  

\bar X=5.63 represent the sample mean  

s=1.61 represent the standard deviation for the sample  

n=15 sample size  

\mu_o =15/tex] represent the value that we want to test  &#10;[tex]\alpha represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

p_v represent the p value for the test (variable of interest)  

State the null and alternative hypotheses to be tested  

We need to conduct a hypothesis in order to determine if the average is more than 5.63, the system of hypothesis would be:  

Null hypothesis:\mu \leq 5.63  

Alternative hypothesis:\mu > 5.63  

Compute the test statistic  

We don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}} (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

We can replace in formula (1) the info given like this:  

t=\frac{5.63-5}{\frac{1.61}{\sqrt{15}}}=1.516  

Now we need to find the degrees of freedom for the t distribution given by:

df=n-1=15-1=14  

P value

Since is a right tailed test the p value would be:  

p_v =P(t_{14}>1.516)=0.076  

If we use a significance level of 0.05 we see that p_v > \alpha and then we can conclude that we don't have evidence in order to conclude that the mean is higher than 5.63, so then the claim makes sense.

3 0
3 years ago
SOMEONE WHO IS GOOD AT EASY MATH! (6th Grade Mathematics)
cricket20 [7]

Answer: Victims are naying that the rogue is a girl.

Step-by-step explanation:

4 0
2 years ago
Which of the following would be an acceptable first step in simplifying the expression sinx/1-sinx
Paha777 [63]
\bf \textit{difference of squares}&#10;\\\\&#10;(a-b)(a+b) = a^2-b^2\qquad \qquad &#10;a^2-b^2 = (a-b)(a+b)&#10;\\\\\\&#10;\textit{also recall that }sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta)\\\\&#10;-------------------------------

\bf \cfrac{sin(x)}{1-sin(x)}\implies \cfrac{sin(x)}{1-sin(x)}\cdot \cfrac{1+sin(x)}{1+sin(x)}\implies \stackrel{first~step}{\cfrac{sin(x)[1+sin(x)]}{[1-sin(x)][1+sin(x)]}}&#10;\\\\\\&#10;\cfrac{sin(x)[1+sin(x)]}{1^2-sin^2(x)}\implies \cfrac{sin(x)[1+sin(x)]}{cos^2(x)}&#10;\\\\\\&#10;\cfrac{sin(x)+sin^2(x)}{cos^2(x)}\implies \cfrac{sin(x)}{cos^2(x)}+ \cfrac{sin^2(x)}{cos^2(x)}&#10;\\\\\\&#10;\cfrac{sin(x)}{cos(x)}\cdot \cfrac{1}{cos(x)}+\cfrac{sin^2(x)}{cos^2(x)}\implies tan(x)sec(x)+tan^2(x)&#10;\\\\\\&#10;tan(x)[sec(x)+tan(x)]
8 0
3 years ago
Read 2 more answers
What is the equation for the graph shown?
ELEN [110]
Your answer is c
Hope this helps :)
6 0
3 years ago
Other questions:
  • 1 3/5 = 1 + 3/5 the whole number part is
    9·1 answer
  • Simplify square root of 2 over cube root of 2.
    11·2 answers
  • 8 times 51 show your work
    15·1 answer
  • Henry has 523 baseball cards. He buys 24 each month. What is a explicit rule for the number of baseball cards Henry has in n mon
    6·2 answers
  • Find the Unit Rate
    13·1 answer
  • Sammy was selling tickets for the football game. He sold five more adult tickets than senior tickets and twice as many children'
    9·1 answer
  • The exponential decay function A = A0(1/2)^t/P can be used to determine the amount A, of a radioactive substance present at time
    9·1 answer
  • Given the following formula,solve for t<br><br>v=u+at
    9·1 answer
  • Calculate the quotient 9/4 divided by 3/8
    5·2 answers
  • *) Place the parentheses to make the expression equal
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!