Answer: where’s the diagram
Step-by-step explanation:
If period of
![f(\theta)](https://tex.z-dn.net/?f=f%28%5Ctheta%29)
is one-half the period of
![g(\theta)](https://tex.z-dn.net/?f=g%28%5Ctheta%29)
and
<span>
![g(\theta)](https://tex.z-dn.net/?f=g%28%5Ctheta%29)
has a period of 2π, then
![T_{g} =2T_{f}=2 \pi](https://tex.z-dn.net/?f=T_%7Bg%7D%20%3D2T_%7Bf%7D%3D2%20%5Cpi%20)
and
![T_{f}= \pi](https://tex.z-dn.net/?f=T_%7Bf%7D%3D%20%5Cpi%20)
.
</span>
To find the period of sine function
![f(\theta)=asin(b\theta+c)](https://tex.z-dn.net/?f=f%28%5Ctheta%29%3Dasin%28b%5Ctheta%2Bc%29)
we use the rule
![T_{f}= \frac{2\pi}{b}](https://tex.z-dn.net/?f=T_%7Bf%7D%3D%20%5Cfrac%7B2%5Cpi%7D%7Bb%7D%20)
.
<span /><span />
f is sine function where f (0)=0, then c=0; with period
![\pi](https://tex.z-dn.net/?f=%20%5Cpi%20)
, then
![f(\theta)=asin 2\theta](https://tex.z-dn.net/?f=f%28%5Ctheta%29%3Dasin%202%5Ctheta)
, because
![T_{f}= \frac{2 \pi }{2} = \pi](https://tex.z-dn.net/?f=T_%7Bf%7D%3D%20%5Cfrac%7B2%20%5Cpi%20%7D%7B2%7D%20%3D%20%5Cpi%20)
.
To find a we consider the condition
![f( \frac{ \pi }{4} )=4](https://tex.z-dn.net/?f=f%28%20%5Cfrac%7B%20%5Cpi%20%7D%7B4%7D%20%29%3D4)
, from where
![asin2* \frac{\pi}{4} =a*sin \frac{ \pi }{2} =a=4](https://tex.z-dn.net/?f=asin2%2A%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20%3Da%2Asin%20%5Cfrac%7B%20%5Cpi%20%7D%7B2%7D%20%3Da%3D4)
.
If the amplitude of
![f(\theta)](https://tex.z-dn.net/?f=f%28%5Ctheta%29)
is twice the amplitude of
![g(\theta)](https://tex.z-dn.net/?f=g%28%5Ctheta%29)
, then
![g(\theta)](https://tex.z-dn.net/?f=g%28%5Ctheta%29)
has a product factor twice smaller than
![f(\theta)](https://tex.z-dn.net/?f=f%28%5Ctheta%29)
and while period of
![g(\theta)](https://tex.z-dn.net/?f=g%28%5Ctheta%29)
<span> </span> is 2π and g(0)=0, we can write
![g(\theta)=2sin\theta](https://tex.z-dn.net/?f=g%28%5Ctheta%29%3D2sin%5Ctheta)
.
Answer: 80 miles
Step-by-step explanation:
4y:5y would be the simplest form
$4680
Since 18% is 18/100 you just have to multiply the $842.4 by the reciprocal of that to find your answer
Reciprocal of 18/100 is 100/18
842.4* 100/18 equals 84240/18
84240/18 equals 4680