Answer:
Check explanation
Step-by-step explanation:
I'll give you my way of solving it and you can figure it out from there.
<CEA = <DEB due to vertical angles
AE = ED due to midpoint theorem
<CAD = <ADB due to alternating angles theorem
thus two triangles congruent due to ASA
From figure 1: -
From figure 2: 12
From figure 3: 6
From figure 4: -12
From figure 5: -2
Step-by-step explanation:
We need to solve the equation
for k.
Solving:

So, the options to be selected are:
From figure 1: -
From figure 2: 12
From figure 3: 6
From figure 4: -12
From figure 5: -2
Keywords: Solving equations
Learn more about Solving equations at:
#learnwithBrainly
Answer:
y=7+3x
Step-by-step explanation:
Since she already has 7 in her account and she ADDS 3 more each day you would multiply 3 by x which represents the number of days and add that to seven because she already had it. This would equal to Y which represents the total in her account
Answer:
1200 N right
Step-by-step explanation:
Subtract 150 from 1350. Since there is more force towards the right, the net force is 1200 N right
Check the picture below, so the parabola looks more or less like so, with a vertex at (0 , -7), let's recall the vertex is half-way between the focus point and the directrix.
so this horizontal parabola opens up to the left-hand-side, meaning that the "P" distance is a negative value.
![\textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\begin{cases} h=0\\ k=-7\\ p=-9 \end{cases}\implies 4(-9)(x-0)~~ = ~~[y-(-7)]^2 \\\\\\ -36x=(y+7)^2\implies x=-\cfrac{1}{36}(y+7)^2](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20h%3D0%5C%5C%20k%3D-7%5C%5C%20p%3D-9%20%5Cend%7Bcases%7D%5Cimplies%204%28-9%29%28x-0%29~~%20%3D%20~~%5By-%28-7%29%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-36x%3D%28y%2B7%29%5E2%5Cimplies%20x%3D-%5Ccfrac%7B1%7D%7B36%7D%28y%2B7%29%5E2)