Answer:
568.3 into the nearest hundred
5.683
Answer:
Rachel
Step-by-step explanation:
We need to measure how far (towards the left) are the students from the mean in<em> “standard deviations units”</em>.
That is to say, if t is the time the student ran the mile and s is the standard deviation of the class, we must find an x such that
mean - x*s = t
For Rachel we have
11 - x*3 = 8, so x = 1.
Rachel is <em>1 standard deviation far (to the left) from the mean</em> of her class
For Kenji we have
9 - x*2 = 8.5, so x = 0.25
Kenji is <em>0.25 standard deviations far (to the left) from the mean</em> of his class
For Nedda we have
7 - x*4 = 8, so x = 0.25
Nedda is also 0.25 standard deviations far (to the left) from the mean of his class.
As Rachel is the farthest from the mean of her class in term of standard deviations, Rachel is the fastest runner with respect to her class.
Answer: i think the answer is 2
Step-by-step explanation:
sorry if im wrong please forgive me
Answer:
The mean number of the students who develop hypertension over a life time is 7.8.
Step-by-step explanation:
For each person, there are only two possible outcomes, either they will develop hypertension, or they will not. The probability of a person developing hypertension is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
The expected value of the binomial distribution is:
Suppose that the probability that a person will develop hypertension over a life time is 60%.
This means that 
13 graduating students from the same college are selected at random.
This means that 
Find the mean number of the students who develop hypertension over a life time

The mean number of the students who develop hypertension over a life time is 7.8.