Answer:
Energy of Photon = 4.091 MeV
Explanation:
From the conservation of energy principle, we know that total energy of the system must remain conserved. So, the energy or particles before collision must be equal to the energy of photons after collision.
K.E OF electron + Rest Energy of electron + K.E of positron + Rest Energy of positron = 2(Energy of Photon)
where,
K.E OF electron = 3.58 MeV
Rest Energy of electron = 0.511 MeV
Rest Energy of positron = 0.511 MeV
K.E OF positron = 3.58 MeV
Energy of Photon = ?
Therefore,
3.58 MeV + 0.511 MeV + 3.58 MeV + 0.511 MeV = 2(Energy of Photon)
Energy of Photon = 8.182 MeV/2
<u>Energy of Photon = 4.091 MeV</u>
Answer:
True
Explanation:
Going even smaller than atoms would get you to subatomic particles such as quarks. From there, it is impossible to distinguish elements. So, yes, atoms are the smallest portions of an element that retains the original characteristic of the element.
Answer:
Explanation:
If a number of less than 1, then the number has a decimal point like
0.085, 0.008 e.t.c.
The zeros before the none zero digit are insignificant. The significant figure is 8 and 5.
But if there a zero between the none zero e.g. 0.0087056
Here the zero between 7 and 5 is significant, then the significant numbers are 8,7,0,5,6
But if the zero is not in between the none zero digit, then the zero is insignificant
E.g 0.05800
The last two zero is insignificant, the significant number is 5 and 8
So, If a positive numbers less than 1, the zeros between the decimal point and a non-zero number are NOT significant.