The answere is No pain, no gain
Answer:
BTS was the biggest fandom in 2020
Answer:
D) momentum of cannon + momentum of projectile= 0
Explanation:
The law of conservation of momentum states that the total momentum of an isolated system is constant.
In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

Answer:
A. α = - 1.047 rad/s²
B. θ = 14.1 rad
C. θ = 2.24 rev
Explanation:
A.
We can use the first equation of motion to find the acceleration:
where,
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (30 rpm)(2π rad/1 rev)(1 min/60 s) = 3.14 rad/s
t = time = 3 s
α = angular acceleration = ?
Therefore,
<u>α = - 1.047 rad/s²</u>
B.
We can use the second equation of motion to find the angular distance:
<u>θ = 14.1 rad</u>
C.
θ = (14.1 rad)(1 rev/2π rad)
<u>θ = 2.24 rev</u>
Answer:
Angular frequency is 20 rad/s.
Explanation:
Given that,
A block is attached to an oscillating spring. The function below shows its position (cm) vs. time (s) is given by :
.....(1)
The general equation of oscillating particle is given by :
.......(2)
Compare equation (1) and (2) we get :

So, the angular frequency of the oscillation is 20 rad/s.