Answer:
The answer of this question is =1.258*10-4
Answer:
The modern instruments or we can say the different levels of telescopes are used to explore and study the distant galaxies. i.e the Hubble telescope is out there providing the data regarding the different properties of the celestial entities which in other case is not visible to the human naked eye.
Explanation:
- Scientists and research workers are in constant search for more answers as they explore the universe and implement the laws of physics on the celestial entities. But, most of the objects inside the universe are not visible to human naked eye, as they are far from sight and thus more advanced form of instruments like the x-ray, optical, and light telescopes are used to determine the different properties of the celestial entities inside the universe.
- As, these telescopes includes the most recent "Hubble telescope", which is out there inside the space to explore the universe and more over the galaxies by subjecting them with x-rays and then provide us with a very rough but valid results to study the distant galaxies.
We use the work formula to solve for the unknown in the problem. The formula for work is expressed as the product of the net force and the distance traveled by the object. We were given both the force and the distance so we can solve work directly.
Work = 250 N x 50 m = 12500 J
Thus, the answer is C.
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>
Answer:
6.003×10¯⁶ N
Explanation:
We'll begin by converting 1 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
1 cm = 1 cm × 1 m / 100 cm
1 cm = 0.01 m
Finally, we shall determine the gravitational attraction. This can be obtained as follow:
Mass 1 (M₁) = 3 Kg
Mass 2 (M₂) = 3 Kg
Distance apart (r) = 0.01 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 3 × / 0.01²
F = 6.003×10¯¹⁰ / 1×10¯⁴
F = 6.003×10¯⁶ N
Thus the gravitational attraction is 6.003×10¯⁶ N