Answer:
KOH
Explanation:
Chemical reaction:
2K + 2H₂O → 2KOH + H₂
Element ratio of K.
K = 1
Because only potassium is present.
Element ratio of H₂O.
2 : 1
in water ratio of element is 2 : 1 because two hydrogen and one oxygen atom present.
Element ratio of KOH
1 : 1 : 1
in KOH elemental ratio is 1 : 1 : 1 because one potassium one hydrogen and one oxygen atom are present.
Element ratio of H₂.
2
Just two atoms of hydrogen are present.
Answer:
Formula Weight of gas sample = 20.1 g/mole => Neon (Ne)
Explanation:
Use Ideal Gas Law formula to determine formula weight and compare to formula weights of answer choices.
PV = nRT = (mass/fwt)RT => fwt = (mass/Volume)RT = Density x R x T
Density = 0.900 grams/L
R = 0.08206 L·atm/mole·K
T = 0.00°C = 273Kfwt = (0.900g/L)(0.08206L·atm/mole·K )(273K)
= 20.1 g/mol => Neon (Ne)
Answer:
It is in the oxidation of NADH to NAD + that lactate dehydrogenase (LDH) plays an important role. LDH catalyzes the following reaction The lactate then diffuses out of the cell and the NAD + is used to continue glycolysis.It is in this manner that the cell continues to produce energy under anerobic conditions.
Explanation:
Answer:
The reaction can produce 287 grams of iron(II) carbonate
Explanation:
To solve this question we must find the moles of iron(II) chloride that react. Using the chemical equation we can find the moles of iron(II) carbonate and its mass -Molar mass FeCO3: 115.854g/mol-
<em>Moles FeCl2:</em>
1.24L * (2.00mol / L) = 2.48 moles FeCl2
As 1 mol FeCl2 produce 1 mol FeCO3, the moles of FeCO3 = 2.48 moles
<em>Mass FeCO3:</em>
2.48mol * (115.854g / mol) =
<h3>The reaction can produce 287 grams of iron(II) carbonate</h3>