Answer:
1. 2.510kJ
2. Q = 1.5 kJ
Explanation:
Hello there!
In this case, according to the given information for this calorimetry problem, we can proceed as follows:
1. Here, we consider the following equivalence statement for converting from calories to joules and from joules to kilojoules:
Then, we perform the conversion as follows:
2. Here, we use the general heat equation:
And we plug in the given mass, specific heat and initial and final temperature to obtain:
Regards!
Answer:
I got 3/8, hope this helps.
Explanation:
14.292 grams of Fe2O3 is formed when 10 gram of iron metal is burned.
Explanation:
The balanced equation for the reaction is to be known so that number of moles taking part can be known.
The balanced chemical equation is
4Fe + 3⇒ 2
From the given weight of iron to be used for the production of , number of moles of Fe taking part in the reaction can be known by the formula:
Number of moles= mass ÷ Atomic mass of one mole of the element.
(Atomic weight of Fe is 55.845 gm/mole)
Putting the values in equation
Number of moles = 10 gm ÷ 55.845 gm/mole
= 0.179 moles
Applying the stoichiometry concept
4 moles of Fe gives 2 Moles of Fe2O3
0.179 moles will produce x moles of Fe2O3
So, 2÷ 4 = x ÷ 0.179
2/4 = x/ 0.179
2 × 0.179 = 4x
2 × 0.179 / 4 = x
x = 0.0895 moles
So from 10 grams of iron metal 0.0895 moles of Fe2O3 is formed.
Now the formula used above will give the weight of Fe2O3
weight = atomic weight × number of moles
= 159.69 grams × 0.0895
= 14.292 grams of Fe2O3 formed.
Answer:
I think it A good luck this thing is making me write 20 letters so I can give you the answer byeee