Answer:
A Light Emitting Diode (LED) is a solid-state semiconductor device that converts electrical energy directly into light. On its most basic level, the semiconductor is comprised of two regions.
Explanation:
In the answer
Answer:
Eªcell > 0; n = 2
Explanation:
The reaction:
I2 (s) + Pb (s) → 2 I- (aq) + Pb2+ (aq)
Is product favored.
A reaction that is product favored has ΔG < 0 (Spontaneous)
K > 1 (Because concentration of products is >>>> concentration reactants).
Eªcell > 0 Because reaction is spontaneous.
And n = 2 electrons because Pb(s) is oxidizing to Pb2+ and I₂ is reducing to I⁻ (2 electrons). Statements that are true are:
<h3>Eªcell > 0; n = 2</h3>
Answer:
25,050 calories.
Explanation:
A calorie is the amount of energy needed to raise the temperature of one gram of water 1 degree centigrade. If we are raising 835 grams of water 30 degrees then we multiply 835*30 to get 25,050 calories.
Answer:allow for greater chances for a sentinel event
Explanation:
Answer:
Product A: cis; no
Product B: cis: no
Explanation:
Two common methods of forming oxiranes from alkenes are:
- Reaction with peroxyacids
- Formation of a halohydrin followed by reaction with base
1. Reaction with peroxyacids
(a) Stereochemistry
The reaction with a peroxyacid is a syn addition, so the product has the same stereochemistry as the alkene.
The starting alkene is cis, so the product is <em>cis</em>-2,3-diethyloxirane.
(b) Configuration
The product is optically inactive because it has an internal plane of symmetry.
It will not rotate the plane of polarized light.
2. Halohydrin formation
(a) Stereochemistry
The halogenation of the alkene proceeds via a cyclic halonium ion.
The backside displacement of halide ion by alkoxide is also stereospecific, so a cis alkene gives a cis epoxide.
The product is <em>cis</em>-2,3-diethyloxirane.
(b) Configuration
The cyclic halonium ion has an internal plane of symmetry, as does the product (meso).
The oxirane will not rotate the plane of polarized light.