Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
We could use solar power, wind power, geothermal power, hydroelectric power, or nuclear power. There are probably more but this is what I can think of off the top of my head. I hope this helps. Let me know if anything is unclear.
Answer:
The answer to your question is 32.44 moles
Explanation:
Data
moles of Na₂CO₃ = ?
volume = 9.54 l
concentration = 3.4 M
Formula
Molarity = 
Solve for number of moles
number of moles = Molarity x volume
Substitution
Number of moles = (3.4)( 9.54)
Simplification
Number of moles = 32.44
Answer:
Kb = [OH⁻] . [C₃H₉NH⁺] / [ C₃H₉N ]
Explanation:
The equation for the reaction of trimethylamine when it is dissolved in water is:
C₃H₉N + H₂O ⇄ C₃H₉NH⁺ + OH⁻ Kb
1 mol of trimethylamine catches a proton from the water in order to produce trimethylamonium.
It is a base, because it give OH⁻ to the medium
Expression for Kb (Molar concentration)
Kb = [OH⁻] . [C₃H₉NH⁺] / [ C₃H₉N ]
Pressure does not affect the voltage produced in a voltaic cell.