58.7 %
Please correct me if I’m wrong. :)
Answer: The bold staircase in the periodic table allows us to classify which elements are metalloids.
Explanation: Additionally, it acts like a "divider" that allows us to properly distinguish the metals from the non-metals in the periodic table.
Add me as a friend!!!
(: O_O :)
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
Answer:
B:GRANITE
Explanation:
<em>Granite is typical of a larger family of granitic rocks that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.</em>
<em>Granite is typical of a larger family of granitic rocks that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.Granite is nearly always massive (lacking any internal structures), hard, and tough. These properties have made granite a widespread construction stone throughout human history.</em>
sana tama
Answer:
Regions of the Electromagnetic Spectrum
Wavelength (m)Frequency (Hz)Radio> 1 x 10-1< 3 x 109Microwave1 x 10-3 - 1 x 10-13 x 109 - 3 x 1011Infrared7 x 10-7 - 1 x 10-33 x 1011 - 4 x 1014Optical4 x 10-7 - 7 x 10-74 x 1014 - 7.5 x 1014