A) 3 x 10 ^ 8
b) 3 x 10 ^ 5
c) 3.2 x 10 ^ 7
d) 9.6 x 10 ^ 15 m
e) 9.6 x 10 ^ 17 cm
Answer:
b.it depends on the distance it falls
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
A) The resultant force is 30.4 N at 
B) The resultant force is 18.7 N at 
Explanation:
A)
In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.
The two forces are:
at
above x-axis
at
above y-axis
Resolving each force:


So, the components of the resultant are:

And the magnitude of the resultant is:

And the direction is:

B)
In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

So we have:

So, the components of the resultant this time are:

And the magnitude is:

And the direction is:

Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Answer:
Explanation:
initial velocity v = 2.1 x 10⁷ m/s
acceleration a = 5.1 x 10¹⁵ m /s²
horizontal distance covered = 5.5 x 10⁻² m
time taken to cover horizontal distance = 5.5 x 10⁻² / 2.1 x 10⁷
= 2.62 x 10⁻⁹ s .
b )
vertical distance travelled due to vertical acceleration
= 1/2 a t²
= .5 x 5.1 x 10¹⁵ x (2.62 x 10⁻⁹)²
= 17.5 x 10⁻³ m