<h2>
Answer: C) It's a high-pressure zone with sinking air</h2>
Explanation:
The intertropical convergence zone is the region of the terrestrial globe where the trade winds of the northern hemisphere converge with those of the southern hemisphere.
It is characterized by being <u>a belt of low pressure</u> and inconsistent location around the equator constituted by ascending air currents, where large masses of warm and humid air converge from the north and south of the intertropical zone.
The reason of its inconsistent location is due to the movements of the Earth with the seasons, having as a consequence the amount variation of heat energy from the sun in this region.
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
Imagine an object is moving in one dimension on a number line, and for this we'll say that the numbers on the line are a metre apart. If the object moves from 2 m to 7 m, the change in position is 7-2=+5 metres. But if the object moves back from 7 m to 2 m, the change in position is 2-7=-5 metres. since

, and time is always positive, velocity will be positive in one direction and negative in the other direction.
Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.
50 miles east. because the 30 miles north then south cancel each other out.