Answer:
Explanation:
Given
Potential Energy is given by

And Force is given by

Particle will be at equilibrium when Potential Energy is either minimum or maximum

i.e.

So angular Frequency of small oscillation is given by

for 
we get 


Answer:
12.7m/s
Explanation:
Given parameters:
Mass of the diver = 77kg
Height = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use one of the motion equations.
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + (2 x 9.8 x 8.18)
v² = 160.3
v = 12.7m/s
A valve is a flap of tissue that prevents blood from flowing back
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.