So, the time that taken for the astronaut to fall to the surface of the moon is <u>2.5 s.</u>
<h3>Introduction</h3>
Hi ! In this question, I will help you. In this question, you will learn about the fall time of the free fall motion. Free fall is a downward vertical motion without being preceded by an initial velocity. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
<h3>Problem Solving</h3>
We know that :
- h = height = 5.00 m
- g = acceleration of the gravity = 1.6 m/s²
What was asked :
- t = interval of the time = ... s
Step by step :




<h3>Conclusion</h3>
So, the time that taken for the astronaut to fall to the surface of the moon is 2.5 s.
<h3>See More</h3>
Answer:
(1) 42.94 m
(2) 
Explanation:
Let us first draw a figure, for the given question as below:
In the figure, we assume that the person starts walking from point A to travel 11 m exactly
south of west to point B and from there, it walks 21 m exactly
west of north to reach point C.
Let us first write the two displacements in the vector form:

Now, the vector sum of both these vectors will give us displacement vector from point A to point C.

Part (1):
the magnitude of the shortest displacement from the starting point A to point the final position C is given by:

Part (2):
As the vector AC is coordinates lie in the third quadrant of the cartesian vector plane whose angle with the west will be positive in the north direction.
The angle of the shortest line connecting the starting point and the final position measured north of west is given by:

Answer:
P = 9622.9 Pa = 9.62 KPa
Explanation:
First, we will calculate the mass of all three liquids:
m = ρV
where,
m = mass of liquid
ρ = density of liquid
V = Volume of liquid
FOR LIQUID 1:
m₁ = (2.8 x 10³ kg/m³)(2 x 10⁻³ m³) = 5.6 kg
m₂ = (1 x 10³ kg/m³)(1.5 x 10⁻³ m³) = 1.5 kg
m₃ = (0.6 x 10³ kg/m³)(1 x 10⁻³ m³) = 0.6 kg
The total mass will be:
m = m₁ + m₂+ m₃ = 5.6 kg + 1.5 kg + 0.6 kg
m = 7.7 kg
Hence, the weight of the liquids will be:
W = mg = (7.7 kg)(9.81 m/s²) = 75.54 N
Now, we calculate the base area:
A = πr² = π(0.05 m)²
A = 7.85 x 10⁻³ m²
Now the pressure will be given as:

<u>P = 9622.9 Pa = 9.62 KPa</u>
Answer:
Explanation:
30 rev/min (2π rad/rev) / (60 s/min) = π rad/s
α = Δω/t = (0 - π)/3 = π/3 rad/s²
θ = ½αt² = ½(π/3)3² = 1.5π radians
θ = 1.5π rad/2π rad/rev = 0.75 rev