Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Got shot with a pump shotgun to the head
Answer:
The current flows through the rod is 14.9 A.
Explanation:
Given that,
Magnetic field = 0.045 T
Mass of aluminum rod = 0.19 kg
Length = 1.6 m
Angle = 30.0°
We need to calculate the force
Using resolving force


Put the value into the formula


We need to calculate the current flows through the rod
Using formula of magnetic force


Put the value into the formula

Hence, The current flows through the rod is 14.9 A.
Answer:
a mirror is a glass which reflects the light falls on it ok
Explanation:
just put a light and see ok
please mark me as brainlist
Explanation:
003 (part 1 of 2)
Pressure is force divided by area.
P = F / A
P = (117 kg × 9.8 m/s²) / (2 × (0.05 m)²)
P = 229,320 Pa
003 (part 2 of 2)
There are approximately 6895 Pa in 1 psi.
P = 229,320 Pa × (1 psi / 6895 Pa)
P = 33.3 psi
004 (part 1 of 2)
Since the collisions are elastic, the angle of reflection is the same as the angle of incidence (it bounces off at the same angle).
Impulse = change in momentum
F Δt = m Δv
F (36 s) = (300 × 0.003 kg) (5.2 sin 57° m/s − (-5.2 sin 57° m/s))
F = 0.218 N
004 (part 2 of 2)
Pressure is force over area.
P = F / A
P = 0.218 N / 0.712 m²
P = 0.306 N/m²