<span>The answer is B. 72.25 percent.
The Hardy-Weinberg principle can be used:</span>
<em>p² + 2pq + q² = 1 </em>and <em>p + q = 1</em>
where <em>p</em> and <em>q</em> are the frequencies of the alleles, and <em>p²</em>, <em>q²</em> and <em>2pq</em> are the frequencies of the genotypes.
<span>The <em>p</em> allele (<em>q</em>) is found in 15% of the population:
q = 15% = 15/100
Thus, q = </span><span>0.15
To calculate the <em>P</em> allele frequency (<em>p</em>), the formula <em>p + q = 1</em> can be used:
If p + q = 1, then p = 1 - q
p = 1 - 0.15
Thus, </span><span>p = 0.85
Knowing the frequency of the <em>P</em> allele (<em>p</em>), it is easy to determine the frequency of the <em>PP </em>genotype (<em>p²</em>):
p² = 0.85² = 0.7225
Expressed in percentage, p² = 72.25%.</span>
I'm sorry but can you be a bit more specific on these following observations?
Genus
for example
scientific name for tiger : Panthera Tigris
Panthera is the Genus name
Tigris is the Species name
hope this helps
Answer:
DNA stores that info
Explanation:
In eukaryotic cells (ex. plants and animals) the DNA is found in the nucleus of the cell. Structures called ribosomes build proteins (this process is called translation).
Mutations can occur before, during, and after mitosis and meiosis. If a mutation occurs in cells that will make gametes by meiosis or during meiosis itself, it can be passed on to offspring and contribute to genetic variability of the population