Answer:
A.
Explanation:
A fictional force (also called force of inertia, pseudo-force, or force of d'Alembert, 5), is a force that appears when describing a movement with respect to a non-inertial reference system, and that therefore it does not correspond to a genuine force in the context of the description of the movement that Newton's laws are enunciated for inertial reference systems.
The forces of inertia are, therefore, corrective terms to the real forces, which ensure that the formalism of Newton's laws can be applied unchanged to phenomena described with respect to a non-inertial reference system. The correct answer is A.
Answer:
Fundamental unit is any unit that is not dependent on other units and other units can be derived from them
Explanation:
Units such as Kilogram, Mass and Time are said to be fundamental units because they are independent.
Differences between Mass and weight;
1. Mass is the measure of the amount of matter in a body while weight is a measure of how the force of gravity acts upon that mass.
2. Mass is a scalar quantity while weight is a vector quantity
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Answer:
163.8 ft
Explanation:
In triangle ABD
= 155 ft


Using Pythagorean theorem in triangle ADC

= distance between the anchor points
distance between the anchor points is given as

Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm