Answer:
3√3
Step-by-step explanation:
The area of a trapezoid is calculated by multiplying the sum of bases by 2 and that divided by 2
(2 + 4) ÷ 2 × √3 = 3√3
<u>Complete Question</u>
The circle is inscribed in triangle PRT. A circle is inscribed in triangle P R T. Points Q, S, and U of the circle are on the sides of the triangle. Point Q is on side P R, point S is on side R T, and point U is on side P T. The length of R S is 5, the length of P U is 8, and the length of U T is 6. Which statements about the figure are true?
Answer:
(B)TU ≅ TS
(D)The length of line segment PR is 13 units.
Step-by-step explanation:
The diagram of the question is drawn for more understanding,
The theorem applied to this problem is that of tangents. All tangents drawn to a circle from the same point are equal.
Therefore:
|PQ|=|PU|=8 Units
|ST|=|UT| =6 Units
|RS|=|RQ|=5 Units
(b)From the above, TU ≅ TS
(d)Line Segment |PR|=|PQ|+|QR|=8+5=`13 Units
Answer:
D 9m 4m because 9 divided by 2 is 3 and 4 divided by 2 is 2 and that's us you answer.
Answer:
Step-by-step explanation:
Answer: OPTION C.
Step-by-step explanation:
Given a function f(x), the range of the inverse of f(x) will be the domain of the function f(x) and the range of the domain of f(x) will be the range of the inverse function.
For example, if the point (2,1) belongs to f(x), then the point (1,2) belongs to the inverse of f(x).
Observe that in the graph of the function f(x) the point (-3,1) belongs to the function, then the point (1,-3) must belong to the inverse function.
Therefore, you need to search the option that shown the graph wich contains the point (1,-3).
Observe that the Domain f(x) is (-∞,0) then the range of the inverse function must be (-∞,0).
This is the graph of the option C.