Answer:
Option A. one rectangle and two triangles
Option E. one triangle and one trapezoid
Step-by-step explanation:
step 1
we know that
The area of the polygon can be decomposed into one rectangle and two triangles
see the attached figure N 1
therefore
Te area of the composite figure is equal to the area of one rectangle plus the area of two triangles
so
![A=(8)(4)+2[\frac{1}{2}((8)(4)]=32+32=64\ yd^2](https://tex.z-dn.net/?f=A%3D%288%29%284%29%2B2%5B%5Cfrac%7B1%7D%7B2%7D%28%288%29%284%29%5D%3D32%2B32%3D64%5C%20yd%5E2)
step 2
we know that
The area of the polygon can be decomposed into one triangle and one trapezoid
see the attached figure N 2
therefore
Te area of the composite figure is equal to the area of one triangle plus the area of one trapezoid
so

If x² = 196, then we must do the inverse (square root) to find x. However, the square root of any positive number will always be ± (plus or minus).
That means you have to do:
√196 = x
x = <span>±14.
We can check this by doing:
14 </span>× 14 = 196
-14 × -14 = 196
Therefore the answer is B) -14, 14.
Hello there!
Okay, I don't know if this is a "select all that apply", but I believe that answers 1, 2, and 3 are all equivalent to 0.53.
To see how these fractions are equal, I divided the numerators by the denominators. For instance, you could have 4 over 5 (4/5) and divide 4 by 5 (4/5) to get 0.8. Now you'll do the same thing for the fractions given
24/45=0.533...
8/15=0.533...
48/90=0.533...
5/9=0.5556
As you can see, the only fraction that doesn't equal 0.53, or the outlier, is 5/9 or 0.5556
I hope this helps you out!
Answer:

Step-by-step explanation:
Let
x-------> the number of pies
we know that
-----> linear equation that represent the situation
solve for x




Round to the nearest whole number

Answer:

Step-by-step explanation:
To evaluate or simplify expressions with exponents, we use exponent rules.
1. An exponent is only a short cut for multiplication. It simplifies how we write the expression.
2. When we multiply terms with the same bases, we add exponents.
3. When we divide terms with the same bases, we subtract exponents.
4. When we have a base to the exponent of 0, it is 1.
5. A negative exponent creates a fraction.
6. When we raise an exponent to an exponent, we multiply exponents.
7. When we have exponents with parenthesis, we apply it to everything in the parenthesis.
We will use these rules 2 and 7 to simplify. First apply the 4 exponent to both -6 and p. Then add the exponent of the base -6 and p on the outside of the parenthesis.
