Answer:
12.0 m/s²
Explanation:
Newton's second law:
F = ma
Solving for acceleration:
a = F/m
If force is doubled and mass is tripled:
a' = (2F)/(3m)
a' = ⅔ (F/m)
a' = ⅔ (18.0 m/s²)
a' = 12.0 m/s²
<span> Beryllium has an exclusive </span>+2<span> oxidation state in all of its compounds</span>
Answer:
E=12.2V/m
Explanation:
To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
The equation is given by,

Where,
V= Drift Velocity
I= Flow of current
n= number of electrons
q = charge of electron
A = cross-section area.
For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is



Mobility
We can find the drift velocity replacing,


The electric field is given by,



Answer:

Explanation:
Hello,
In this case, considering that the acceleration is computed as follows:

Whereas the final velocity is 28.82 m/s, the initial one is 0 m/s and the time is 4.2 s. Thus, the acceleration turns out:

Regards.